Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts.
نویسندگان
چکیده
OBJECTIVES The expression and distribution of connexins is abnormal in a number of cardiac diseases, including atrial fibrillation, and is believed to favor conduction slowing and arrhythmia. Here, we studied the role of atrial structural remodeling in the disorganization of gap junctions and whether redistributed connexins can form new functional junction channels. METHODS Expression of connexin-43 (Cx43) was characterized by immunoblotting and immunohistochemistry in human right atrial specimens and in rat atria after myocardial infarction (MI). Gap junctions were studied by electron and 3-D microscopy, and myocyte-myocyte coupling was determined by Lucifer yellow dye transfer. RESULTS In both chronically hemodynamically overloaded human atria in sinus rhythm and in dilated atria from MI-rats, Cx43 were dephosphorylated and redistributed from the intercalated disc to the lateral cell membranes as observed during atrial fibrillation. In MI-rats, the gap junctions at the intercalated disc were smaller (20% decrease) and contained very little Cx43 (0 or 1 gold particle vs. 42 to 98 in sham-operated rats). In the lateral membranes of myocytes, numerous connexon aggregates comprising non-phosphorylated Cx43 were observed. These connexon aggregates were in no case assembled into gap junction plaque-like structures. However, N-cadherin was well organized in the intercalated disc. There was very little myocyte-myocyte coupling in MI-rat atria and no myocyte-fibroblast coupling. Regression of the atrial remodeling was associated with the normalization of Cx43 localization. CONCLUSION Structural alteration of the atrial myocardium is an important factor in the disorganization of connexins and gap junction. Moreover, redistributed Cx43 do not form junction channels.
منابع مشابه
Adaptation of the heart to hypertension is associated with maladaptive gap junction connexin-43 remodeling.
We hypothesized that hypertension-related myocardial remodeling characterized by hypertrophy and fibrosis might be accompanied by cell-to-cell gap junction alterations that may account for increased arrhythmogenesis. Intercellular junctions and expression of gap junction protein connexin-43 were analyzed in rat heart tissues from both spontaneous (SHR) and L-NAME model of hypertension. Isolated...
متن کاملEffect of Chronic Intracerebroventricluar Administration of Lipopolysaccharide on Connexin43 Protein Expression in Rat Hippocampus
Background: Hippocampal damages, which are accompanied by inflammation, are among the main causes of epilepsy acquisition. We previously reported that chronic intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS) modulates epileptogenesis in rats. There is a network of gap junction channels in the hippocampus that contribute to epileptogenesis. Gap junction channels are formed ...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملAtrial Remodeling Is Directly Related to End-Diastolic Left Ventricular Pressure in a Mouse Model of Ventricular Pressure Overload
BACKGROUND Atrial fibrillation (AF) is often preceded by underlying cardiac diseases causing ventricular pressure overload. OBJECTIVE It was our aim to investigate the progression of atrial remodeling in a small animal model of ventricular pressure overload and its association with induction of AF. METHODS Male mice were subjected to transverse aortic constriction (TAC) or sham operation. A...
متن کاملRapid turnover of connexin43 in the adult rat heart.
Remodeling of the distribution of gap junctions is an important feature of anatomic substrates of arrhythmias in patients with healed myocardial infarcts. Mechanisms underlying this process are poorly understood but probably involve changes in gap junction protein (connexin) synthesis, assembly into channels, and degradation. The half-life of the principal cardiac gap junction protein, connexin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 72 1 شماره
صفحات -
تاریخ انتشار 2006